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ABSTRACT 
Gesture typing has been a widely adopted text entry method 
on touchscreen devices. We have conducted a study to 
understand whether older adults could gesture type, how they 
type, what are the strengths and weaknesses of gesture 
typing, and how to further improve it. By logging stroke-
level interaction data and leveraging the existing modeling 
tools, we compared the gesture and tap typing behavior of 
older adults with young adults. Our major finding is 
promising and encouraging. Gesture typing outperformed 
the typical tap typing for older adults, and was very easy for 
them to learn. The gesture typing input speed was 15.28% 
higher than that of tap typing for 14 older adults who had 
none gesture typing experience in the past. One of the main 
reasons was that older adults adopted the word-level 
inputting strategy in gesture typing, while often used the 
letter-level correction strategy in tap typing. Compared with 
young adults, older adults exhibited little degradation in 
gesture accuracy. Our study also led to implications on how 
to further improve gesture typing for older adults.  
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INTRODUCTION 
The American population is aging at a rate never seen before. 
The number of older adults (i.e., ages 65 years or older) is 
projected to be more than doubled from 46 million (14.5% 
of population) in 2014 to over 98 million (23.5% of 
population) by 2060 [27], as the baby boomers – those born 
between 1946 and 1964 – are aging. In parallel to the rapid  

 
Figure 1. An older adult was gesture typing in the study. 

expansion of the aging population, older adults are also 
moving towards more digitally connected lives: around four-
in-ten (42%) older adults now report owning smartphones, 
up from just 18% in 2013 [1]. 

Despite the sharp growth in mobile device adoption, older 
adults are struggling with using these devices [20]. One of 
the greatest challenges is to enter text, which is the basic 
method for communication (e.g., emailing and messaging), 
and the cornerstone for high level activities such as 
searching, filling on-line forms, social networking, etc.  

Why is entering text challenging for older adults? First, text 
entry itself is already difficult for the general population 
regardless of the age: it is difficult to land a relatively large 
finger on small keys on a phone-sized virtual keyboard. 
Second, the age-related degradation in motor control ability, 
visual acuity, and cognitive ability exacerbates the problem 
for older adults. It is even harder for older adults to search 
for and acquire small keys.  

The difficulty of text entry has prevented older adults from 
reaping the benefits of mobile computing at the same level 
as younger adults. Kurniawan et al. ’s study [20] showed that 
some older adults even tend to be panic when dealing with 
text messages; some also think that it would be impolite not 
to reply immediately. 

The text entry technique has advanced considerably as the 
smartphones has becoming increasingly popular. One of the 
breakthroughs was gesture typing [19], which supports a user 
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to enter a word by gliding the input finger from letter to letter 
without lifting it off. Gesture typing has possessed a number 
of advantages over the typical tap typing: it is immune to a 
major problem plaguing regular touchscreen typing: the lack 
of tactile-feedback, and allows users to express intended 
words with approximate shape and location finger strokes, 
rather than precisely tapping on the corresponding keys. To 
date, it is enabled in many large-scale commercial or freely 
downloadable keyboard products (e.g., Google Gboard, 
Microsoft SwiftKey, and TouchPal), has been adopted by a 
number of languages, and has been used by hundreds of 
millions of users all over the world.  

Given the success of gesture typing among the general 
population, would it work for older adults? The answer is not 
immediately obvious. Previous research has shown both 
positive and negative evidence. On the one hand, Kobayashi 
et al.'s research [17] shows that older adults in general prefer 
sliding or dragging over tapping, as tapping requires 
repetitive finger take-off and land-on actions. Nicolau et al.’s 
[26] research on five text entry methods showed older adults 
were slightly faster with tracing than with typing. On the 
other hand, it is known that older adults often undergo age-
related degradation in motor control ability[14], which might 
prevent them from freely drawing gestures. Because of the 
decline of procedure memory, their ability of learning new 
skills degraded [13]. It might prevent them from learning 
gesture typing, which is a new typing paradigm than the 
typical tap typing. 

Facing evidence from both sides, we have carried out a study 
to compare the gesture and tap typing behavior of older 
adults with young adults. We aim to answer the following 
questions. Is gesture typing a promising text entry method 
for older adults? If so, why? What are its strengths and 
weaknesses compared with tap typing? How will older adults 
gesture type differently from young adults? By logging 
stroke-level events (i.e., key strokes and gesture strokes) in a 
28-user lab study, we were able to perform a model-based, 
stroke-level analysis between older and young adults for both 
gesture and tap typing, leading to a number of novel findings. 

Our main finding is that gesture typing is a very promising 
text entry method for older adults. It outperformed the typical 
tap typing for the 14 older adults, who had none gesture 
typing experience at all (13 of them had not even heard of it 
before the study). The average input speed of gesture typing 
was 15.28% faster than that of tap typing. One reason was 
that gesture typing prompts older adults to adopt a word-
level inputting strategy: waiting until the end of a gesture to 
correct errors, while they often used a letter-level strategy for 
tap typing: correcting any letter errors immediately as they 
appear, which prevented them from benefiting from the 
word-level correction power of the modern statistical 
decoding technology. Our study showed that the accuracy of 
gestures of older adults did not degrade compared with 
young adults, although they were slower at gesturing, 
especially with long gestures. Our research also revealed the 

behavior patterns of gesture typing in both temporal and 
spatial dimensions for older adults, and leading to 
implication on how to design text entry technology for older 
adults.  

RELATED WORK 
Our research is built upon the prior work in text entry 
techniques for general population, text entry techniques for 
older adults, and age-related ability degradation. 

Text Entry Techniques for General Population 
Text entry techniques have advanced a great deal in the past 
decades. Our research is particularly related to the following 
two breakthroughs: gesture typing and statistical decoding.  

Since introduced in 2004 by Kristensson and Zhai[19], 
gesture typing has gained large adoption worldwide. It has 
been extended to accommodate a variety of input modalities 
and support various scenarios. Bi et al. created a bimanual 
gesture keyboard [4], which allowed one word to be entered 
by multiple strokes using both hands. Markussen et al. 
investigated gesture typing in mid-air [23], Yu [36] explored 
using head movement to perform gesture typing, while Yeo 
et al. [34] explored using device tilt angle for gesture typing. 

On the tap typing front, one breakthrough is the wide 
adoption of the statistical decoding algorithm [11, 32]: 
instead of mapping a touch point to the corresponding key 
based on whether it falls within the key boundary, this 
algorithm infers a probability distribution over multiple keys 
based on its spatial relation to keys (i.e., spatial model) and 
language context (i.e., language model). To date, the 
statistical decoding algorithm has been adopted by almost all 
the commercially available keyboards. Previous research has 
shown that the statistical decoder could reduce the input 
errors more than 70% [3], and its performance could be 
further improved by adapting the spatial model to postures[2, 
6, 7], activities, and individuals [10, 36], or personalizing 
language models [9]. 

Text Entry Techniques for Older Adults 
It has also long been recognized that text entry is challenging 
for older adults. Nicolau and Jorge [26] investigated older 
adults’ typing behavior on a simplistic touchscreen keyboard 
without any correction or prediction ability. Their research 
showed that the error rates of older adults were higher, and 
the most common types of errors were omission, followed by 
substitutions and insertions. They further suggested using 
language models to correction errors, which was one of the 
topics investigated in this paper (i.e., effect of a statistical 
decoder for older adults). Smith and Chaparro [31] compared 
the performance of five smartphone text entry methods, 
voice, physical keyboard, virtual keyboard, tracing, and 
handwriting, between older and young adults. Their research 
showed that voice and physical keyboard were the most 
effective methods, while handwriting was the least effective. 
Interestingly, their study showed tracing (a.k.a gesture 
typing) slightly outperformed tap typing. This finding 
motivated us to carry out the current study focusing on the 
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stroke-level behavior of gesture and tap typing, to understand 
why gesture typing could be more suitable for older adults, 
and why the existing tap typing did not work well for older 
adults. 

A number of methods have also been proposed to improve 
text entry performance for older adults. Hagiya et al. 
developed Typing Tutor [12], an individualized tutoring 
system for older adults; Rodrigues et al. [30] explored 
highlighting the most probable next letter, or enlarging its 
size, to ease the typing for older adults; Komninos et al. 
proposed the MaxieKeyboard[18], which highlighted errors, 
auto-corrections and suggestion bar usage, for older adults. 
The understanding gained from our study would in turn 
guide the design of appropriate text entry methods for older 
adults. 
Age-related Ability Degradation 
Older adults undergo age-related degradation in various 
abilities. Motor control ability declines as adults are aging: 
the execution of movement becomes slower and more 
variable [15, 33]. In Fitts law tasks (i.e., aimed rapid pointing 
tasks) [8], older adults tend to move slower than young adults 
at all levels of difficulty [16], and demonstrate higher 
variability in the trajectory and end-point position, compared 
with young adults. Visual acuity also declines as adults age 
[13, 25]. Presbyopia, or the inability to change the eyes focal 
length, is so common during the last half of life that most 
people over age 40 have experienced it [28]. Additionally, 
the cognitive processing ability also deteriorates as adults 
age [13, 29]. More specifically, procedural memory – 
knowledge about how to perform activities, declines. 
Although the well-learned behaviors (i.e., automatized 
procedures prior to senescence) remain intact, older adults 
have difficulty developing new automatic processes 
(conceptually like developing new habits) [29]. 

The research on age-related degradation shows that gesture 
typing could be challenging to older adults, because it is a 
new input method which might require learning, and it might 
be challenging for older adults to draw gesture strokes due to 
the degraded motor ability. These disadvantages could offset 
the potential benefits shown in other research. It serves as 
another motivation of the current work: to understand overall 
how well older adults perform in gesture typing considering 
all the advantages and disadvantages. 

GESTURE AND TAP TYPING BEHAVIOR OF OLDER 
ADULTS 
We have conducted a control experiment to compare the 
performance and behavior of gesture and tap typing between 
older and young adults. 

Experimental Setup 

Design 
We adopted a 2 × 2 mixed factorial design. The between-
subject independent variable was user group (older and 
young adults), and the within-subject independent variable 
was keyboard type (gesture and tap keyboards). The 

dependent variables included input speed, error rates, 
backspace used per word. Each participant was asked to 
complete phrase transcription tasks on two keyboards. The 
order of keyboard type was counter balanced within each 
user group. Each task consisted of 4 blocks, each block 
containing 5 phrases. The order of the phrases in each block 
was randomized. 

Task and apparatus 
A Nexus 5X smartphone running Android 6.0.1 with a 5.2 
inch 1080 × 1920 display was used in this study. A 
customized Google keyboard with logging feature was used. 

Figure 2. shows the screen shots of the text entry app used in 
this study. The app prompted target phrases on top of the 
screen. A subject repeated the phrases by typing on the 
keyboard. The subjects were instructed to type naturally as 
fast as possible also as accurate as possible. When the subject 
finished repeating the phrase, she pressed the green arrow 
button to submit, then the app prompted next phrase to be 
entered. Every touch event was recorded during the study 
session. The phrases were randomly selected from a subset 
of Mackenzie and Soukoreff phrase set [22, 35]. The same 
set of phrases were used in the study. Each participant spent 
around 40 minutes to complete the study. 
Procedure and participants 

 
Figure 2. Experimental Setup.  

14 young adults (1 female) aged from 24 to 34 were recruited 
with the help of university mailing list and bulletin boards. 
As for older adults, they were recruited in Senior Planet 
Center in New York City via emails and posters. Their ages 
ranged from 65 to 81, and they were all in good health 
conditions and had no vision or motor deficit. We used the 
default settings in Google keyboard, with suggestion, 
prediction and vibration enabled. Each subject practiced 
prior to each condition, and they chose their preferred 
posture. All the subjects typed using one hand to hold the 
phone. The orders of the conditions were counterbalanced. 

The self-reported familiarity with tap typing and gesture 
typing were based on a five-level Likert scale (1: Never 
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heard of it, 5: expert). The medians of the young adults’ 
familiarity were both 4 in tap typing and gesture typing, and 
the medians of the older adults’ familiarity were 5 and 1 in 
tap typing and gesture typing, respectively. 

We asked participants to come to our lab for the study. We 
then gave a briefing of the tasks and asked the participants to 
sign the consent forms. If the user agreed to do the study, we 
then gave a 5 minutes tutorial on how to use the keyboards. 
Participants were also given a warm up session that required 
them to type 5 phrases before going to the formal session.  

In total, our study included: 

14 subjects × 2 groups × 4 blocks × 5 phrases = 560 phrases 

Results 
We first analyzed the performance metrics such as speed and 
error rates, and then analyzed the detailed typing behavior.  

Speed  
The input speed was calculated following [21]: 

𝑊𝑃𝑀 =
|𝑆 − 1|

𝑇
×
1

5
 

where S is the length of the presented string in character, T is 
the time elapsed in minutes from the start of the first touch 
down event of the first gesture stroke to the moment pressing 
the next button. On average each English word has 5 letters 
(including space). 1/5 was used to convert “character per 
minute” into “word per minute”, as explained in [22]. 

 
Figure 3. Mean (95% CI) Input Speed. 

Figure 3 showed the means (95% confidence interval) of 
input speed of gesture typing and tap typing across all the 
participants for both older and young groups. The mean 
speed (SD) in WPM for older adults were 26.02 (6.82) for 
gesture typing, and 22.57 (5.78) for tap typing. For young 
adults, the average speed (SD) were 39.31 (16.88) for gesture 
typing, and 40.27 (7.50) for tap typing. ANOVA showed a 
main effect of keyboard type on the input speed within older 
adults group (F1,13 =4.901, p<.05), but not within young 
adults group (F1,13 =0.089, p=.77). There was also a 
significant main effect of user group on input speed (F1,26 
=20.29, p<.001). No significant interaction was observed 

between user group and keyboard type either (F1,26 =1.50, 
p=0.229). 

We also compared the input speed by block for each 
keyboard condition, as shown in Figure 4. For older adults, 
as shown the average speed within each block for the gesture 
typing was lower than tap typing for the first 2 blocks, but 
higher in the last 2 blocks. For young adults it was not the 
case. The speed of gesture typing was slower than tap typing 
on any block number. ANOVA showed a significant main 
effect of the block number on the input speed within older 
adults group (F3,78= 8.854, p<.001), but not within young 
adults group (F3,78=0.883, p=.453). There was also a 
significant keyboard × block interaction effect observed 
(F3,162= 3.968, p<.001). 

 
Figure 4. Mean Input Speed by Block 

 
Figure 5. Mean Input Speed by Phrase Order 

Figure 5. showed the input speed by each trial, indicating a 
trend of growing of speed by trail number when using gesture 
typing.  

To understand why older adults typed slower than young 
adults, especially for tap typing. We analyzed the number of 
keystrokes per word, and the average time of entering a 
keystroke in tap typing. As shown in Table 1, older adults 
tended to use keystrokes per word, and their speed was 
slower for each keystroke, compared with young adults. The 
average length of a word in the tested data set was 5.3 
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(including space). The extra keystrokes were likely caused 
by the usage of backspace, which was analyzed later.  

 Keystrokes used 
per word 

Seconds per 
keystroke 

Older Adults 6.6 0.56 

Young Adults 5.27 0.36 

Table 1. Number of keystrokes per word, and average time of 
entering a keystroke in tap typing. 

Error rate 
Since both gesture and tap typing keyboards performed 
word-level corrections, we measured error rate with word 
error rate. The word error rate [3] is based on minimum word 
distance (MWD), which is the smallest number of word 
deletions, insertions, or replacements needed to transform 
the transcribed string into the expected string. The word error 
rate is defined as: 

𝑟 =
𝑀𝑊𝐷(𝑆,𝑃)

𝑊𝑜𝑟𝑑𝐶𝑜𝑢𝑛𝑡(𝑃)
× 100%                   (Eq. 1) 

where MWD(S, P) is the minimum word edit distance 
between transcribed phrase S and the target phrase P, and 
WordCount(P) is the number of words in P.  

 
Figure 6. Mean (95% CI) Word Error Rate 

Figure 6. shows the means (SD) of word error rate of gesture 
typing and tap typing across all the participants for both older 
and young groups. The mean WER for older adults were 
6.79% (SD=8.53%) for gesture typing, and 9.32% 
(SD=12.81%) for tap typing. For young adults, the average 
WER was 1.73% (SD=1.69%) for gesture typing, and 3.00% 
(SD=4.82%) for tap typing. ANOVA did not show a main 
effect of keyboard type on the WER (F1,26 =0.846, p=0.366). 
There was a significant main effect of user group on WER 
(F1,26=6.33, p<.05). No significant interaction was observed 
between user group and keyboard type (F1,26=0.092, 
p=0.764). 

Backspace usage 
To understand how users corrected their mistakes, we 
measured the backspace key usage. We defined backspace to 
words ratio as: 

𝑑 =
𝑁𝑑

𝑊𝑜𝑟𝑑𝐶𝑜𝑢𝑛𝑡(𝑃)
                        (Eq. 2) 

where Nd was the number of backspace key presses in one 
trial, P was the target phrase in this trial, and WordCount(P) 
was the total number of words in P. For older adults, the 
backspace usages were 0.41 (SD=0.38) for tap typing, and 
0.15 (SD=0.12) for gesture typing, while for young adults, 
the backspace usages were 0.33 (SD=0.32) for tap typing, 
and 0.13 (SD=0.09) for gesture typing.  

Furthermore, in tap typing we divided the backspace usage 
into two situations: intermediate backspace and non-
intermediate backspace. In the former the user pressed the 
backspace key before they reached the end of a word; in the 
latter, backspace was pressed after the user reached the end 
of a word. The former reflected that a user tried to correct 
letter-level errors before the end of the word. 

The intermediate backspace usage was 0.17 (SD=0.19) for 
older adults and the intermediate backspace usages for young 
adults were 0.18 (SD=0.16). Besides, ANOVA showed a 
main effect of keyboard type on the intermediate backspace 
within older adults group (F1,13 =6.869, p<.05), and within 
young adults group (F1,13 = 6.537, p<.05) and also for 
keyboard type (F1,26 = 13.029, p<.05). ANOVA did not show 
significant main effect of user group (F1,26 = 0.499, p = 
0.486). No significant interaction was observed between user 
group and keyboard type (F1,26 = 0.495, p=0.48817). 

For non-intermediate backspace, the usage was usage was 
0.24 (SD=0.25) for older adults and 0.15 (SD=0.19) for 
young adults. ANOVA show a main effect of keyboard type 
within young adults group (F1,13 = 13.59, p<.05) and also for 
keyboard type (F1,26 = 8.176, p < .05), but no significant main 
effect in older adults group (F1,13 = 0.024, p=0.879) or 
between user group (F1,26 = 0.784, p = 0.384). There was a 
significant interaction between user group and keyboard type 
(F1,26 = 7.036, p < .05). 

 

Subjective preferences 
At the end of study, each subject was asked to provide a 
continuous numerical rating of the overall impression of the 
keyboard (1-least like, 5-most like). As shown in Figure 7, 
the ratings of gesture keyboard were higher than tap typing 
keyboard in both user groups. 

Since subjective preferences were provided as continuous 
numerical values, we performed ANOVA on it. It did not 
show a significant main effect of keyboard type (F1,26 = 
0.237, p = 0.630), or user group (F1,26 = 0.415, p = 0.525) on 
preferences. No interaction effect between user group and 
keyboard was observed (F1,26 = 2.824, p < .105). No 
significant main effect of keyboard type was observed within 
older adults (F1,13 = 0.16, p = 0.696) or young adults (F1,13 = 
3.37, p = 0.0893) either. 
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Figure 7. Mean(SD) of subjective rating of keyboards by 

group. 

 

Touch point distribution 
In this section we analyze the distributions of touch points 
based on keystrokes for older adults and compare them with 
young adults. The size of the keyboard used in this study was 
the input area size of the default Google keyboard on a Nexus 
5X device (1080 × 825 pixels), each key occupies a 
rectangular area of 108 × 165 pixels. 

Figure 8 showed the distributions of the touch points for each 
key for tap typing keyboard in both user groups. The mean 

offsets from key centers were 0.92, 10.06 pixels in x,y-axis 
for older adults, -1.34, 6.82 pixels in x,y-axis for young 
adults. The mean standard deviation of all distributions were 
87.61 ,46.06 pixels in x,y-axis for older adults , 73.33, 42.82 
pixels in x,y-axis for young adults. As shown, the touch 
points tended to spread wider for older adults than young 
adults. 

If we divide the Qwerty layout into two halves according to 
[24], the mean offsets from key centers in x-axis were 5.46 
pixels for keys on the left, and -5.26 pixels for keys on the 
right (for older adults). For young adults, the mean offsets in 
x-axis were 9.92 pixels for keys on the left, and -16.69 pixels 
for keys on the right. This indicated a tendency of typing 
towards the center of the keyboard. However, the difference 
was significant for young adults (F1,24 = 29.02, p < .05), but 
not for older adults (F1,24 = 2.192, p = 0.152). 

We also observed variances in the offsets in the y-axis for 
touch points on different rows of the keyboard. From the top 
row to the bottom row, the mean offsets were 17.41, 9.56, 
and 0.21 pixels for older adults, and 16.88, 6.17, and -6.73 
pixels for young adults. There was a main effect of row 
number on the offsets within older adults group (F2,23 = 
6.683, p < .05) and within young adults group (F2,23 = 34.65, 
p < .05). 

 

 

  

  

Figure 8. Touch point distribution for tap typing (scatter plots and 95% confidence ellipses). Left: Older adults. Right: Young 
adults. 
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MODELING GESTURE TYPING SPEED WITH CLC 
MODEL 
To further understand how fast older adults could gesture 
type, we use the CLC model [5] which stands for “curves, 
line segments, and corners” to model the production time of 
the gestures for both older and young adults. The model 
partitions the gesture into segments, where each segment is 
a curve (with a constant radius of curvature), a straight line, 
or a corner (whose interior angle does not need to be 90°). 
The time that it takes for a person to gesture each type of 
segment is modeled with a different function. For line 
segments, the time is modeled with a power function that 
echoes how people tend to gesture faster with longer lines: 

                                   𝑇(𝑙𝑖𝑛𝑒) = 𝑚𝐿𝑛                      (Eq. 3) 

in which L is the length of the line in pixel, m,n are 
empirically determined parameters. 

Since a gesture template is composed of multiple straight 
lines, the gesture typing tasks could be modeled using the 
polyline model as described in the work of [5]. As shown in 
Cao and Zhai’s work [5], the corner time was negligible 
compared with stroke time and could be accounted for in the 
line model, the gesture typing time could be modeled as: 

                                    𝑇 = ∑𝑇(𝑙𝑖𝑛𝑒)                     (Eq.4) 

Which was the sum of time of drawing line segments in the 
polyline template. Figure 9 showed the gesture typing time 
per gesture length, and the modeling results.   

Results 

 
Figure 9. Gesture production time by length for older and 

young adults separately.   

The fitted model To, Ty for older adults, young adults 
respectively were: 

                             𝑇𝑜 = 64.68𝐿0.773            (Eq. 5) 

                             𝑇𝑦 = 28.89𝐿0.802            (Eq. 6) 

The R2 value were 0.929, 0.908 for To and Ty respectively. 
As shown in Figure 9, both older and young adults’ gesture 
typing speed were well modeled by the CLC model. The 

modeling results showed that young adults in general were 
faster than older adults. As the gesture got longer, the gap 
between older and young adults increase drastically.  
Shape error and location error 
To understand to what degree the gesture traces deviate from 
the word template on a virtual keyboard (i.e., connecting 
centers of letters with straight lines), we compared the 
location error and shape error between the actual gesture 
traces and word templates. Location error and shape error 
originated from the seminal SHARK2 gesture recognition 
algorithm [19]. The former reflects the absolute location 
distance, while the latter reflects the normalized shape 
difference, between gesture traces and the word templates. 
Since these two error terms were well defined and explained 
in [19], we skipped the detailed explanation in this paper. 
Greater errors indicate that the actual gesture deviates more 
from the word template. 

The mean shape and location error were 0.0668(SD=0.04), 
53.697 pixels (SD=28.3). For young adults, the mean shape 
and location error were 0.0725(SD=0.052), 53.65 pixels 
(SD=35.09), suggesting that the accuracy of gestures made 
by older adults did not degrade from the young adults. Figure 
10 showed the sample gestures from older and young adults. 

 

 

 
Figure 10. Gesture Samples for Older and Young Adults. The 
dot indicates the starting position and is for illustration only 

 

DISCUSSION 

Gesture typing outperformed tap typing for older adults 
Our study showed that older adults performed better in 
gesture typing than in tap typing. Their average input speed 
in gesture typing was 26.02 WPM, 15.3% higher than the 
speed in tap typing (22.57 WPM). The error rates were 
6.79%, 27.1% lower than that of tap typing (9.32%). The 

Session 6: Advancing Communication ASSETS’18, October 22–24, 2018, Galway, Ireland

277



subjective ratings were also in favor of the gesture typing. In 
contrast, young adults showed similar performance between 
gesture and tap typing. 

Surprisingly, although all of the 14 older adults had no prior 
gesture typing experience at all (13 of them had not even 
heard of gesture typing), they could quickly learn gesture 
typing. As shown in Figure 5, their average input speed was 
above 25 WPM after 10 phrases. Some participant 
commented gesture typing was natural to use, because the 
underlying action, sliding finger from one place to another 
was commonly seen in touchscreen interaction. 

Why gesture typing is promising for older adults? 
Our stroke-level analysis showed why gesture typing 
outperformed tap typing for older adults. 

First, older adults often adopted a word-level inputting 
strategy in gesture typing: drawing a gesture and checking 
the outcome only after the finger was lifted off. In contrast, 
they often used a letter-level inputting strategy in tap typing: 
correcting errors with backspaces as soon as they appeared. 
The intermediate backspace usage was 41% among all the 
backspace usage for older adults, indicating that they often 
corrected intermediate letters before inputting the last letter 
of this word. As the existing statistical decoder works at the 
word level: correcting the errors after the word delimiter 
(e.g., space) was entered, the letter-level inputting strategy 
prevented older adults from enjoying the correction power.  

Second, although older adults were slow at drawing gestures, 
they could draw them with high accuracy. Our analysis 
showed the shape errors of the gesture traces of older adults 
were even slightly smaller to that of young adults, and the 
location errors were similar. It showed the degraded motor 
ability had only minor effect on the accuracy of the gesture 
traces, which may contribute to the ease of gesture typing.   

How to improve gesture typing for older adults? 
Our study also revealed potential problems for gesture 
typing, providing implications for designing more efficient 
gesture typing technique for older adults. 

First, it is considerably challenging for older adults to enter 
words with long gestures. Figure 9 showed that as the gesture 
becomes longer, it takes considerably longer time for older 
adults to draw, compared with young adults. Some older 
adults commented that it was hard for them to glide the finger 
over such a long distance. They wished they could stop, and 
enter the rest of the word with tapping.  

It implied that older adults may benefit from mixing gestures 
and tapping for entering a word: entering some letters with 
gestures, and some with tapping. It would allow them to 
enjoy the best of both worlds. Entering a word with mixed 
gestures and tapping has been shown possible in Bi et al.’s 
work [4], and the corresponding algorithm has been 
developed too. It is worth testing it with older adults in the 
future. 

How to improve tap typing for older adults?  
Although the focus of our research was on gesture typing, 
our study also revealed the problems of the tap typing for 
older adults, implying how to further improve it. 

First, a major reason that older adults performed poorly with 
tap typing was that they tended to correct every error they 
made along the way. In part, it was because they were 
unaware of, did not trust the auto-correction ability of the 
statistical decoder, or were reluctant to learn the expert 
typing mode: typing ahead and relying on auto-correction. 
Their text entry performance could be drastically improved 
if the keyboard UI design could encourage them to further 
take advantage of its auto-correction ability. 

Second, our analysis of touch point distributions showed that 
the touch points of older adults tend to spread much wider 
than young adults, indicating that the spatial model of the 
decoder should be further modified to account for their 
typing behavior.  

Third, the tap typing speed of older adults was drastically 
slower than that of the young adults. One reason is that older 
adults typed more strokes per word than young adults. The 
average number keystrokes per word of older adults was 6.6, 
1.33 keystroke more than young adults. The average time 
needed to enter a key stroke was 55.6% longer than young 
adults. It suggested that older adults may benefit from 
technique that can save keystrokes (e.g., predicting the word 
based on partial input). 

 

CONCLUSION 
Our main finding is very promising and encouraging: gesture 
typing is well-suited for older adults. For 14 older adults who 
had zero experience of gesture typing in the past, their 
gesture typing speed was 15.3% faster than tap typing, and 
error rate was 27.1% lower. Gesture typing was also easy to 
learn for older adults, who achieved such performance within 
20 minutes. The stroke-level behavior analysis showed that 
older adults adopted a word-level inputting strategy for 
gesture typing, opposed to the letter-level strategy for tap 
typing. Our study also revealed that older adults could draw 
gestures as accurately as young adults, despite the 
degradation of motor control ability. Overall, our research 
showed that gesture typing was very promising for older 
adults and provided implication on how to further improve it 
in the future. 
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APPENDIX 
Table 2 shows the touch point distribution for both older adults and young adults in tap typing. 

Key 
Older adults Young adults 

µx σx µy σy µx σx µy σy 

A 136.86 149.63 271.78 40.19 117.42 127.13 260.01 39.71 

B 430.76 48.35 432.73 53.93 440.71 83.38 413.56 77.45 

C 645.29 96.69 430.56 46.15 643.49 65.44 424.19 60.77 

D 285.06 101.38 116.41 45.96 281.84 70.83 116.52 44.95 

E 327.07 54.77 272.90 30.54 337.29 82.21 267.22 31.75 

F 536.03 102.44 272.25 49.86 531.51 75.52 280.96 38.81 

G 436.18 126.95 268.87 39.86 444.39 88.98 273.37 32.00 

H 801.42 100.59 108.33 49.64 788.83 105.30 109.92 50.09 

I 650.77 110.51 270.61 49.20 636.64 79.88 266.34 43.70 

J 870.73 24.59 276.08 26.95 824.59 103.67 268.94 38.64 

K 778.74 10.58 271.00 20.46 745.51 21.28 262.49 17.68 

L 851.98 113.76 431.11 50.70 842.37 77.56 420.46 49.84 

M 964.69 108.61 270.88 35.16 957.42 66.49 268.63 44.34 

N 890.23 125.66 116.25 48.69 891.15 110.75 112.85 49.83 

O 762.51 81.41 428.77 75.96 735.78 78.25 420.35 66.52 

P 59.00 24.88 107.20 22.15 66.14 26.08 105.64 27.44 

Q 968.74 206.23 116.26 47.32 1,003.71 63.02 115.10 44.23 

R 233.37 102.69 274.19 42.18 225.86 82.66 270.12 36.51 

S 383.85 81.17 115.03 39.18 386.24 42.32 113.10 29.19 

T 710.45 64.84 112.27 43.49 702.32 48.49 116.48 58.25 

U 486.85 98.42 112.68 39.34 492.41 71.27 120.07 41.07 

V 203.01 137.83 128.61 56.73 203.93 136.63 116.92 30.13 

W 540.09 87.69 424.55 70.24 529.94 35.07 433.92 21.07 

X 601.93 64.90 116.05 33.24 598.16 44.75 117.18 36.82 

Y 308.00 39.59 394.32 123.65 347.21 88.95 420.76 50.86 

Z 200.41 13.62 451.91 16.88 230.42 30.60 412.14 51.62 

Table 2. Touch point distribution (in pixels) of both older adults and young adults in tap typing. µx and µy are the mean of the 
touch points. σx and σy are the standard deviations of the touch points. The origin (x, y) = (0, 0) is on the top of the screen. 
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