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ABSTRACT
A virtual keyboard takes a large portion of precious screen
real estate. We have investigated whether an invisible key-
board is a feasible design option, how to support it, and how
well it performs. Our study showed users could correctly
recall relative key positions even when keys were invisible,
although with greater absolute errors and overlaps between
neighboring keys. Our research also showed adapting the spa-
tial model in decoding improved the invisible keyboard per-
formance. This method increased the input speed by 11.5%
over simply hiding the keyboard and using the default spatial
model. Our 3-day multi-session user study showed typing on
an invisible keyboard could reach a practical level of perfor-
mance after only a few sessions of practice: the input speed
increased from 31.3 WPM to 37.9 WPM after 20 - 25 min-
utes practice on each day in 3 days, approaching that of a
regular visible keyboard (41.6 WPM). Overall, our investiga-
tion shows an invisible keyboard with adapted spatial model
is a practical and promising interface option for the mobile
text entry systems.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User
Interfaces-Input devices and strategies

Author Keywords
Text entry; virtual keyboards; touchscreen.

INTRODUCTION
The HCI field has long aspired to realize Invisible user
interfaces as an interaction paradigm. For example,
Fishkin, Moran, and Harrison [9] envisioned that interaction
paradigms would progress towards an ideal of the invisible
user interface where there is no perceived mediation between
users and computers, which mirror more real-world interac-
tions. A sizable amount of research [18, 19, 20, 26] in line
with this vision has been carried out, especially in the context
of mobile computing.

A virtual keyboard is one of the most important user in-
terfaces on mobile devices. In line with the invisible UI
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(a) (b)
Figure 1. (a) is a visible keyboard; (b) is an invisible keyboard, which
saves screen real estate for displaying more conversation history in a
chat application.

paradigm, reducing the keyboard’s visibility is compelling for
many reasons, including the following:

First, an invisible keyboard frees a large portion of screen
real estate, which offers more space for displaying multime-
dia content and other UI space. A keyboard usually occupies
more than 40% of screen real estate (e.g., Figure 1a), resulting
in an unsatisfying user experience. Li et al.’s survey [27] over
50 iPad users showed that the users desired to minimize the
space occupied by the virtual keyboard. In fact, their ratings
of the iPad display size dropped from 5 (1: very unsatisfied;
5: very satisfied) to 4 when the keyboard was visible. One of
the reasons, as commented by the users, was that the remain-
ing screen real estate was too small to work on properly, and
they had to scroll up and down all the time.

Second, typing on an invisible keyboard mirror how an expert
(i.e., touch typist) types on a physical keyboard or a type-
writer. On traditional typewriters, typing without looking at
the keyboard is considered superior to “hunt-and-peck”, be-
cause it allows the typist to focus attention on the composition
of the text. Touch typing has been the standard typing method
taught since at least the 1920’s [22]. Typing on an invisible
keyboard connects to such typing experience.

If an invisible keyboard is desirable, is it practical? We ex-
pected it would be extremely challenging, if not impossible.
The input signals would be very noisy. Previous research has
shown the imprecision of finger touch and small key sizes
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already result in noisy input signals on a fully visible key-
board [2, 21]. The amount of noise would increase drastically
if keys become invisible. Although many users have learned
the key positions via the 10-finger motor skill on physical
keyboards, such a skill may not fully transfer to virtual key-
boards with 1 or 2 finger-typing.

On the other hand, research has shown cases that users are
able to interact with spatial interfaces without visual feed-
back. Virtual Shelves [26] showed that users were able to
point at a set of spatial positions without visual feedback;
imaginary user interface research [18] showed users could in-
teract with spatial interfaces that existed only in their imagi-
nation. Thanks to the dominance and wide adoption of the
Qwerty layout, users’ memory on key locations might be
strong enough to guide them to land the touch point in the
vicinity of the target key position without visual cues.

Advances in statistical decoding also offer increasingly
greater error tolerance to typing on virtual keyboards. With
currently available statistical decoding technology, users were
able to type between 22 - 24 WPM on a watch-sized key-
board [14], suggesting that the modern statistical decoder can
handle the amount of imprecision due to the larger finger rel-
ative to the small watch-sized full Qwerty. Likewise, the cor-
rection ability of the decoder might be strong enough to cor-
rect input errors on invisible keyboards.

Contributions. We have investigated whether it was possible
to make a keyboard invisible but functional, how users type
on such a keyboard, and how to support it. Our investigation
led to the following findings.

Our initial Wizard of Oz study showed all participants could
correctly specify relative key positions on a virtual Qwerty
keyboard even when keys were invisible, even though their
typing patterns varied from typing on a visible keyboard.

Second, based on the initial study results, we designed the
spatial model of the invisible keyboard decoder to account for
the typing patterns. We derived the adapted spatial model for
the invisible keyboard from our study data, integrated it into a
state-of-the-art decoder with a language model, and systemat-
ically evaluated it. User studies showed that this method was
very effective: it increased the input speed by 11.5% over us-
ing the default spatial model in decoding. We disclose the
parameters of the derived spatial model (Appendix), which
are available for use by other researchers.

Third, a 3-day multi-session evaluation showed that users
could learn typing on an invisible keyboard with the adapted
spatial model to a practical level. The input speed was 37.9
WPM, which was close to the speed on a regular visible key-
board (41.6 WPM), after 20 - 25 minute practice on each day
in 3 days. This surprisingly promising performance was con-
trary to the common expectation that removing the key visual
would hamper typing performance. The input speed on the
invisible keyboard also increased from 31.3 WPM on day 1
to 37.9 WPM on day 3, showing a rapid learning process.

RELATED WORK
Our work builds on prior research on invisible and imaginary
user interfaces, keyboards with reduced screen real estate, and
statistical keyboard decoding techniques.

Invisible and Imaginary User Interfaces
Fishkin, Moran and Harrison [9] envisioned that user inter-
faces evolved from keyboard UI to Graphical UI (GUI), Ges-
tural UI, Tangible UI, Embodied UI, and finally to invisible
user interfaces, reflecting a progression towards tighter em-
bodiments, more directness in manipulating the intended ob-
ject, and more coincidence between input and output. Ever
since then, researchers have made progress toward realizing
this vision, and setting a general context for our work.

Research on invisible, imaginary and translucent user inter-
faces has shown the feasibility of users interacting without
visual feedback, and the benefits of these interfaces. Li et
al. [26] showed that users could pick an item out of 11 lo-
cations spread out along the phi and theta planes of a hemi-
sphere. Gustafson et al.’s studies [18] showed participants
could draw basic characters and sketches on an imaginary
sketchpad, and acquire points in an imaginary space using
left hand as a reference, despite the lack of visual feedback.
Their research [19] also showed by using a physical device
(e.g. an iPhone), a user inadvertently learned the interface and
could then transfer that knowledge to an imaginary interface.
Gupta et al. [17] proposed porous interfaces, a paradigm that
combined translucent interfaces with finger identification, to
support efficient multitasking on mobile devices.

Keyboards with Reduced Screen Real Estate
A considerable amount of effort has been invested into re-
ducing the space occupied by a keyboard. Back to the era
of feature phones, Letterwise [30] and other commercial
dictionary-based disambiguation software supported reduced
(or cluster) keyboard with 12 keys; Green et al. [15] created
a reduced Qwerty keyboard which mapped four rows of a
standard keyboard into the home row, with different charac-
ters encoded via modifier keys and multi-tap input. Clawson
et al. [6] investigated the impacts of limited visual feedback
on Twilddler and a mini-Qwerty physical keyboard, which
showed that blind typing on Twiddler was faster and more
accurate than on a mini-Qwerty keyboard.

As smartphones are becoming popular, research has been
conducted on reducing the size of a virtual keyboard, to re-
lease more screen space for displaying content and interac-
tion. Li et al. [27] proposed the 1Line keyboard: condens-
ing three rows of keys into one row by arranging 26 letters
in eight keys at the bottom of a tablet device. Although
the 1Line keyboard was designed for 10-finger typing on a
tablet, which had greater screen real estate than many portable
touchscreen devices, users still benefited substantially from
the extra space released from the keyboard. The Minuum
Keyboard [23] is another commercialized one-row keyboard
available on both Android and iOS.

Previous research also investigated back-of-the-device inter-
action for text entry. Wigdor et al. [39]’s LucidTouch enables
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touch input on the back of the devices, by overlaying an im-
age of the user’s hands onto the screen and creating an illusion
of semi-transparency. It allows for accurate targeting, but still
requires the presence of an on-screen keyboard for text entry
tasks. Others also attempted applying a physical keyboard
to the backside of the mobile devices to maximize the use
of the display for visual output. Scott et al. [36]’s RearType
supported 10-finger typing on iPad-size mobile devices at an
average typing speed of 15 WPM. Kim et al. [24] presented
the Back Keyboard, a Qwerty keyboard on the back of a mo-
bile phone. Users were able to reach an average text entry
rate of 15.3 WPM.

Beyond reducing keyboard sizes, the ASETNIOP Keyboard
on tablet [28] provides a chorded keyboard system which sup-
port 10-finger typing on an transparent keyboard; BlindType
made a video demo showing the prototype of an invisible key-
board; the Fleksy Keyboard [10] supports an invisible key-
board mode. However, there is not any published document
explaining how users type, how the keyboards work, or the
performance for any of these keyboards.

Disappearing keyboard has been appealing to users. Previous
researchers have explored supporting it on TV [29] and smart-
watches [32]. Lu et al.’s work [29] showed that on a smart TV
users could recall relative key positions on a touch pad with
the keyboard displayed on the TV screen. Users could type at
17-23 WPM in such a setting. Mottelson et al. [32] developed
a swipe-based transparent keyboard on a smartwatch. Users
could enter text at 10.6 WPM after 30 minutes.

Previous research has also explored making the keyboard
translucent. KeyGlasses [35] displays additional semi-
transparent keys on the keyboard after each character input, in
order to minimize the movement of the pointing device. Arif
et al. [1] proposed the translucent keyboard with the camera
view behind the keys, which enables users to perform text
entry on the move while still able to see the surroundings
for navigational purposes. Users of different expertise levels
were able to reach an average of 24.07 WPM typing speed
while walking through a course path. Going further, we have
extended the invisible interaction paradigm to direct tapping
on smartphones.

Keyboard Decoding
A significant amount of effort has been invested in improving
virtual keyboard decoding, in order to handle noisy and error-
prone input signals from finger touch.

Similar to the algorithm used in a feature phone keyboard,
one approach is to firstly convert a touch point sequence into
a key sequence, and search for the most likely match between
the key sequence and a word. Both the 1Line keyboard [27]
and relative keyboard input system [34] adopted such an ap-
proach. Rashid and Smith’s work [34] allows a user with
the ability to touch-type to type anywhere on the sensing sur-
face without a visual keyboard. Evaluated with real user data,
however, the average accuracy of such a keyboard was very
low, ranging from 48.5% to 45.6%. The modern statistical
decoding techniques employed in our research substantially
outperform such method, with the accuracy more than 95%.

More and more recent research including this work has
adopted a statistical approach: rather than deterministically
mapping touch points into key sequences, it treats a touch
point as a noisy signal, which has a probability distribu-
tion over multiple keys. The probability inferred from touch
points are then combined with the probability from language
models via the Bayes’ Rule to determine the probability of
a word candidate. Goodman et al. [13] were the first to pro-
pose combining a language model with pen/touch model to
correct input errors on soft keyboards. Bi and Zhai [4, 5] de-
rived FFitts law [4] to model finger touch location with a dual
Gaussian distribution model, offering a better approximation
of touch model for text entry. Weir et al. [38] proposed a
Gaussian Process regression approach to model the touch lo-
cations, and allowed users to control the uncertainty of input
via touch pressure. Vertanen et al. [37] further proposed a
sentence-level decoding approach by combining touch model
and language models.

In addition to taking advantage of language models, re-
searchers also explored other methods for decoding. Kris-
tensson and Zhai [25] presented a pattern-matching approach
which viewed the hit points as a high resolution geomet-
ric pattern, and matched it against patterns formed by the
letter key center positions of legitimate words in a lexicon.
Gunawardana et al. [16] developed key-target resizing algo-
rithms, where the underlying target areas for keys were dy-
namically resized based on their probabilities.

EXPERIMENT 1: UNDERSTANDING TYPING ON AN INVIS-
IBLE KEYBOARD
We first carried out a study to investigate the typing behavior
on an invisible touchscreen keyboard. We aimed to answer
the following two questions: 1) can users type when keys are
invisible? 2) if they can, how do they type differently?

Experiment Setup
We designed an invisible Wizard of Oz keyboard to first cap-
ture users’ natural typing behaviors which were not biased
towards any decoding algorithms. In the study, participants
were instructed to type as naturally as possible, and assume
that the keyboard would correct input errors. The output of
the keyboard was shown as asterisks, as shown in Figure 2.
In addition to avoiding bias towards any decoding algorithms,
this task also reflected expert typing behavior where users
typed ahead, ignored the intermediate output and relied on
the keyboard to correct errors.

Tasks. The study included three keyboard conditions: visi-
ble, partially-invisible , and invisible (Figure 2). We included
visible and partially-invisible as baseline conditions. In the
partially-invisible condition, key labels were hidden but the
boundaries were visible. Including these baseline conditions
allowed us to observe how typing behaviors change as the
keyboard visuals were reduced. In both conditions, the key-
board layouts were the same size as a regular Google key-
board on Nexus 5X. The key size was 6.5 by 8.1 mm (108
by 135 pixels). The invisible keyboard is shown in Figure 2a.
The last row of the keyboard (with functional keys and space
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key) was always visible to users; keyboard position and size
were unknown to the users.

(a) Invisible keyboard

(b) Partially-invisible keyboard

(c) Visible keyboard
Figure 2. The application used in Experiment 1. (a) is an invisible key-
board; (b) is a partially-invisible keyboard, where only the boundaries
of each key are visible; (c) is a visible keyboard.

Participants and Apparatus. We recruited 18 participants (8
female), aged from 18 to 50. All participants had at least
one year experience of typing on touchscreen keyboards on
mobile devices. The median of self-reported familiarity with
Qwerty keyboard (1: extremely unfamiliar; 10: extremely fa-
miliar) was 9. They used their preferred posture: 9 partic-
ipants (50%) with two thumbs, 6 with one thumb (33.33%),
and 3 with one index finger (16.67%). Approximately 70% of
the participants used Google keyboards on a daily basis, and
the rest of the participants used iOS keyboards on iPhones.

The experiment was conducted on a LG Nexus 5X device
running Android 6.0. The phrases were randomly selected
from MacKenzie and Soukoreff’s test set [31]. The same set
of phrases were used for all the participants.

Design. The study was a within-subject design. The inde-
pendent variable was the three levels of keyboard visibility
conditions: visible, partially-invisible, and invisible. The or-
ders of the three conditions were counterbalanced across par-
ticipants. Participant were instructed to complete three tasks.
Each of the tasks was for one keyboard condition. Each task
consisted of 4 blocks, and each block had 10 phrases. Partic-
ipants could take a short break after each block.

In total, the study included:
3 layouts × 4 blocks × 10 phrases × 18 participants
= 2160 phrase.

Results
Figure 3 shows the distributions of touch points for each key
in each condition. As shown in Figure 3c, the centers of touch
point distributions formed a Qwerty layout, showing that par-
ticipants were able to correctly memorize the relative key po-
sitions even when keys were invisible.

Vertical Offsets
We define the vertical offset as yt − yc, where yt is the y co-
ordinate of a touch point and yc is the y coordinate of the ge-

ometric center of the target key. A positive/negative vertical
offset indicates the touch point is below/above the key center.

The mean vertical offset across keys (in pixels) were −96.4
(SD = 38.8) for the invisible, 22.6 (SD = 5.0) for partially-
invisible conditions, and 20.8 (SD = 7.6) for the visible con-
dition. The invisible condition resulted in the greatest off-
set, which was more than 4 times as great as that in the vis-
ible condition. ANOVA showed the keyboard visibility had
a main effect on vertical offset (F2,34 = 74.66, p < 0.0001).
Pairwise comparisons with bonferroni adjustment showed the
differences between invisible vs. partially-invisible condi-
tion and invisible vs. visible condition were significant (both
p < 0.0001), while the difference between partially-invisible
vs. visible condition was not (p > 0.05).

As shown in Table 2 in Appendix, the mean offset for 25
out of 26 keys in the visible condition and for all keys in
the partially-invisible condition were positive, indicating that
participants tended to land touch points below key centers.
This finding concurs with the observation in Azenkot and
Zhai’s study [2]. In contrast, in the invisible condition touch
points had a strong upward shift: the mean vertical offset
of every key was negative. In the invisible condition, touch
points for the top-row keys (e.g., “q”, “w”, “e”) had greater
vertical offsets in magnitude than those for the bottom-row
keys (e.g., “x”, “c”, “v”). The mean offset was −44.52
(SD = 18.2) for the bottom row, −93.1 (SD = 8.77) for the
middle row, and −135.7 (SD = 8.2) for the top row (in pix-
els). The vertical offset in the top row was 3.05 times as great
as that in the bottom row.

Horizontal Offsets
Similarly, we define the horizontal offset as xt−xc, where xt is
the x coordinate of a touch point and xc is the x coordinate of
the geometric center of the target key on a regular keyboard.
A positive/negative offset indicates hitting to the right/left of
the key center.

The mean horizontal offset was the largest in magnitude in
the invisible condition, at −47.3 pixels (SD = 35.1), which
was also 4 times as great as that in the visible condition
(M = −10.5,SD = 5.7). The mean for keys in the partially-
invisible condition was −25.3 pixels (SD = 19.2), smaller
than in the invisible condition, but greater than that in the vis-
ible condition. There was a main effect of keyboard type on
horizontal offset (F2,34 = 36.06, p < 0.0001). Pairwise com-
parisons with bonferroni adjustment showed the differences
between any two conditions were significant (p < 0.0001).

Variances
As expected, we observed greater variances in the invisible
and partially-invisible conditions. The mean standard de-
viations (in pixels) across keys were 48.0 (x direction) and
38.7 (y direction) for the invisible, 33.6 and 13.8 for the
partially-invisible, and 15.5 and 10.2 for the visible condi-
tion, as shown in Figure 5. The standard deviations in the x,
and y directions in the invisible condition were 3.10 times,
and 3.81 times as great as those in the visible condition, re-
spectively. ANOVA showed keyboard type had a main effect
on mean standard deviations (F2,34 = 24.87, p < 0.0001 for x
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(a) Visible keyboard (b) Partially-Invisible keyboard (c) Invisible keyboard
Figure 3. Scatter plots (top) and 95% confidence ellipses (bottom) of touch points in three keyboard layouts. The figures are drawn in the same scale.

(a) Visible keyboard (b) Partially-Invisible keyboard (c) Invisible keyboard
Figure 4. Horizontal (top) and vertical (bottom) offsets for touch points in three keyboard layouts. The color gradient and arrow of each key indicate
the value of the offset in pixels. The arrows are drawn in the scale of key size. The key boundaries in invisible keyboard are for illustration purposes
only.

direction, F2,34 = 41.54, p < 0.0001 for y direction). Pair-
wise comparisons with bonferroni adjustment also showed
that the differences between any two conditions were signif-
icant (p < 0.0001). The results showed that in the invisible
condition the standard deviation in the y direction increased
drastically from the bottom row to the top row. The mean
standard deviation in y were 50.6 (SD = 5.8) for the bottom
row, 65.2 (SD = 3.7) for the middle row, and 80.7 (SD = 9.3)

for the top row in pixels. The standard deviation for the top
row was 60% greater than that for the bottom row.

Discussion

Can Users Type When Keys Are Invisible?
The answer to this question is affirmative. The results showed
users were able to correctly recall key locations relative to the
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Figure 5. The means (95% confidence interval) of standard deviations
across keys for x and y directions in three conditions.

Qwerty layout in both invisible and partially-invisible condi-
tions: the centers of touch points still formed a Qwerty layout
(Figure 3). It shows that users’ memory on the key locations
is strong even with 1- or 2-finger typing. Although previous
research [8] showed users could specify relative key positions
with 10-finger typing, it was unknown whether users were
able to do so on a phone-sized keyboard, because the motor
memory on key positions learned via 10-finger touch typing
might not translate to 1 or 2-finger typing. Our study showed
that users’ memory recall could play a stronger than expected
role even on mobile typing with 1 or 2 fingers. All partic-
ipants also completed the typing task even in the invisible
condition, not withstanding that fact that this was a Wizard of
Oz where the users was not given the knowledge of results.

Typing Patterns on an Invisible Keyboard
The study results also revealed distinctly different typing pat-
terns when keys were invisible. First, we observed greater
offsets and variances of touch points in the invisible condi-
tion. The magnitudes of both vertical and horizontal offsets
in the invisible condition were 4 times as great as those in the
visible condition. The standard deviations in x and y direc-
tions were 3.10 and 3.81 times as those in the visible condi-
tion, respectively.

Second, users tended to land touch points higher than the
original key position in the invisible condition. The mean
vertical offset for every key was negative, showing a strong
upward shift trend. This pattern also contrasted with the typ-
ing behavior in the visible condition where users tended to hit
below the key centers, which was observed both in our study
and Azenkot and Zhai’s study [2]. The results also showed
much greater variances of touch points in y direction than in
the x direction in the invisible condition. The standard de-
viation of touch points in y direction was 48.0, 24% greater
than the standard deviation in x direction, which was at 38.7.
These results showed that without knowing the upper bound
of the keyboard, participants were uncertain about the y coor-
dinate of a key, resulting in large offset and variance.

Third, touch points for the top-row keys (e.g., “q”, “w”, “e”)
had greater vertical variances and offsets in magnitude than
those for the bottom-row keys (“x”, “c”, “v”). The mean
standard deviation in y for top-row keys was 60% greater than

that for the bottom-row keys, and the mean vertical offset was
3.05 times as great as that of the bottom-row keys. The bot-
tom row was adjacent to the space bar row, which might serve
as a reference for locating the bottom-row keys, resulting in
less variances and offsets.

Typing Patterns on a Partially-Invisible Keyboard
Our study also showed how users typed in the partially-
invisible condition. The offsets and variances of touch points
in the partially-invisible condition were greater than those in
the visible condition, but smaller than those in the invisible
condition. These results matched the intuition that the level
of visual guidance in the partially-invisible condition was an
intermediate between the visible and the invisible conditions.
Interestingly, as shown in Figures 3 and 4, the touch point dis-
tributions in the partially-invisible condition were very differ-
ent from those in the invisible condition, but similar to those
in the visible condition.

ADAPTING SPATIAL MODEL FOR INVISIBLE KEY-
BOARDS
Experiment 1 showed it was possible to type on an invisible
keyboard. On the other hand, the distinct typing patterns indi-
cated that the typical keyboard decoder, which is designed to
handle input signals on a regular visible keyboard, might not
work well for keyboards with reduced visibility. To account
for the distinct typing patterns, we have derived a spatial
model based on the study results for the invisible keyboard,
integrated them into a state-of-the-art decoder with language
models, and systematically evaluated it. In this section, we
first explain the basic principle and spatial model for statisti-
cal decoding. Readers familiar with these two concepts can
skip it. We then describe how we derived the spatial models
for the invisible keyboard and integrated it into a state-of-the-
art decoder.

Statistical Decoding Principle
Fundamentally, the current keyboard decoding [5, 11, 13, 37,
38] usually relies on two types of knowledge represented by
two models: a spatial model (SM) that relates a touch point to
keys on a keyboard, and a language model (LM) that gives the
prior probability distributions of words given history. As soon
as the user reaches the word boundary such as hitting a space
or punctuation, the decoder combines the probabilities from
these two models to generate the final probability of a word
according to the Bayes’ theorem, and suggests the words with
highest final probabilities to the user.

Formally, given a set of touch points on the keyboard S =
{s1,s2,s3, ...,sn}, the decoder is to find word W ∗ in lexicon L
that satisfies:

W ∗ = argmax
W∈L

P(W |S). (1)

From the Bayes’ rule,

P(W |S) = P(S|W )P(W )

P(S)
. (2)

As P(S) is an invariant across words, Equation (1) becomes:

W ∗ = argmax
W∈L

P(S|W )P(W ). (3)
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P(W ) is obtained from a language model (LM) and P(S|W )
is from a spatial model (SM).

Spatial Model
This section describes how a decoder calculates P(S|W ) from
a spatial model.

Assuming that W is comprised of n letters: c1,c2,c3, ...,cn, S
has n touch points, and each tap is independent, we have:

P(S|W ) =
n

∏
i=1

P(si|ci). (4)

As shown in previous research, touch points for tapping a key
follow a bivariate Gaussian distribution [2]. Therefore, as-
suming the coordinates of si is (xi,yi), P(si|ci) can be calcu-
lated as:

P(si|ci) =
1

2πσix σiy

√
1−ρ2

i

exp
[
− z

2(1−ρ2
i )

]
, (5)

where

z≡ (xi−µix)
2

σ2
ix

−
2ρi(xi−µix)(yi−µiy)

σix σiy
+

(yi−µiy)
2

σ2
iy

, (6)

(µix ,µiy ) is the center of the touch point distribution aimed on
key ci; σix and σiy are standard deviations; ρi is the correla-
tion.

The decoder usually uses the center of key ci, or the center
with a small, constant offset as (µix ,µiy), and constant σix
and σiy across keys.

Deriving Spatial Model for Invisible Keyboards
To adapt the decoder to the invisible keyboard, we calculated
the spatial model parameters according to the study results.
More specifically, for each key ci, we changed µix ,µiy , σix ,
σiy and ρi in Equations (5) and (6) to the values estimated
from the study data (Figure 3 and Table 2 in Appendix). We
then swap the existing spatial model of the Google Keyboard
decoder with the adapted spatial model we calculated.

Note that a keyboard decoder also adds penalties to different
types of spelling or cognitive errors such as insertion, omis-
sion, and transposition errors. Since our study did not show
whether the error type changed when typing on an invisible
keyboard, we kept this procedure unchanged. We used a lan-
guage model which had a lexicon of 70K words.

We kept auxiliary keys such as space bar, period, comma,
shift, and backspace keys visible, because input from these
keys could not be corrected by the decoder, and some served
special functions (e.g., backspace for deletion and shift for
switching keyboard layouts).

To fully release the screen real estate previously occupied by
the keyboard to the background content, we moved the sug-
gestion bar to the bottom of the keyboard. It also allowed
users to easily select suggestions at the end of entering a
word, since it was close to the word delimiter keys (e.g.,
space, punctuation). We decided including the suggestion

bar for the invisible keyboard design because of the follow-
ing two reasons. First, it reflected the common practice in
existing touchscreen keyboards. The suggestion bar is by de-
fault turned on in major keyboard products (e.g., SwiftKey,
Swype, Google Keyboard). Even the iPhone keyboard (iOS
11) recently switched to the default-on mode for suggestion
bar. Although its general utility is low [33], the suggestion
bar serves as a “safety net” in case the top auto-correction
fails, and is necessary for entering Out-Of-Vocabulary words.
Second, the suggestion bar could be very useful, if not neces-
sary, when the input signal is ambiguous or noisy especially
on an invisible keyboard. We have implemented the invisible
keyboard (shown in Figure 1b) as a general touchscreen in-
put method service, which is compatible with all applications
running on the Android devices.

EXPERIMENT 2: EVALUATING SPATIAL ADAPTION
METHOD
We conducted a study to investigate the effectiveness of the
spatial adaption method. We compared the invisible keyboard
with the adapted spatial model (referred as adapted), with
a baseline invisible keyboard (referred as unadapted) whose
decoder remained the same as a regular visible keyboard. In
other words, the baseline was a condition in which we simply
hid keys and made no changes to the decoder.

Experiment Setup
Design. The study was a typical phrase transcription task. It
was a within-subject design. The independent variable was
the invisible keyboard with two different decoders: spatially-
adapted and unadapted.

Before the formal study, participants performed a practice
session with five phrases. Each participant was instructed to
complete a phrase input session for each keyboard. A session
included 4 blocks, each with 10 phrases. To reflect the regu-
lar text entry behavior, participants were allowed to freely use
backspace and suggestion bars. At the beginning of each trial,
a phrase was displayed to help participants quickly memo-
rize the phrase. The participant was instructed to enter it as
quickly and accurately as possible. After entering a phrase,
the user pressed the “Done” button to proceed to next phrase.
The order of the two keyboards were counter-balanced across
participants.

Participants and Apparatus. 12 subjects (2 female), aged
from 18 to 40 participated in this experiment. All participants
had at least one year experience of typing on touchscreen key-
board on mobile devices. The median of self-reported famil-
iarity with the Qwerty keyboard (1: extremely unfamiliar; 10:
extremely familiar) was 9. They used their preferred pos-
ture (two thumbs, one thumb, or index finger) throughout the
study. The experiment was conducted on an LG Nexus 5X
device running Android 6.0. Figure 6 shows the application
used in the study. Each participant typed the same set of 40
phrases randomly chosen from MacKenzie and Soukoreff’s
test set [31].

In total, the study included:
12 participants × 2 keyboards × 40 phrases = 960 phrases.
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Figure 6. Experiment 2 setup. A user held the device in one hand,
and typed on the invisible keyboard with her preferred posture. The
spatially-adapted and the unadapted keyboards shared the same ap-
pearance.

Results
As widely adopted in text entry research, we measured the
performance in speed and error rate.

Speed. The input speed was calculated as:

WPM =
|S−1|

T
× 1

5
, (7)

where S is the length of the transcribed string in character, T
is the time elapsed in minutes from the first touch event to
the last touch event for the string. Every five characters were
counted as one word.

The means of speed in WPM were 29.30 (SD = 6.20) for
the spatially-adapted keyboard, and 26.29 (SD= 7.08) for the
unadapted, as shown in Figure 7. There was a main effect of
keyboard type (F1,11 = 7.959, p = 0.0166) on input speed.

Figure 7. Means (95% confidence interval) of input speed for spatially-
adapted and unadapted invisible keyboards.

Error Rate. Since all the keyboards in this research performed
word-level corrections, we used the word error rate. The word
error rate [3] is based on Minimum Word Distance (MWD),
which is the smallest number of word deletions, insertions, or
replacements needed to transform the transcribed string into

the expected string. The word error rate is defined as:

r =
MWD(S,P)

LengthInWords(P)
×100%, (8)

where MWD(S,P) is the minimum word distance between
the transcribed phrase S and the target phrase P, and
LengthInWords(P) is the number of words in P. Since par-
ticipants were encouraged to correct errors while entering
phrases, this value reflects the word error rate after correc-
tion.

The means of word error rate were 3.83% (SD = 5.5%) for
the spatially-adapted, and 2.48% (SD = 2.24%) for the un-
adapted. ANOVA did not show a significant main effect of
keyboard type (F1,11 = 1.057, p = 0.326).

Subjective Rating. At the end of the study, participants were
asked to rate the keyboard using a 5-level scale (1: very dis-
like, 5: very like). The median ratings were 3 (OK) for the
spatially-adapted, slightly higher than that of the unadapted
(2: Dislike); the modes were 4 (like) for both keyboards.
Many users commented that they preferred typing on the
spatially-adapted keyboard because the keys were positioned
further apart and made it easier for typing.

Discussion
The derived spatial model outperformed the existing spatial
model. The input speed of the keyboard with the derived
spatial model was 11.5% faster than the unadapted in the in-
visible condition. The difference was statistically significant
(p < 0.05).

This promising result was observed after the adapted spatial
model was integrated into a state-of-the-art decoder with lan-
guage models. It suggests that the spatial typing patterns are
strong enough to generate significant benefits even when lan-
guage models are present. This is not obvious because the
spatial adaption could have just negligible effects due to the
presence of language models: the correction ability from lan-
guage models might be very strong so that the improvement
from the spatial adaption has only minor effects. Our study
shows this is not the case. Our finding also has strong external
validity: the participants and phrases in this study were totally
different from those in the previous study based on which the
spatial model was derived.

Our finding expands the understanding on the effectiveness
of spatial adaption. Literature has shown that spatial adaption
reduced the error rates for 10 finger typing on a tablet [7], for
posture, key location and individual adaption [12, 40], and for
TV with a keyboard displayed [29]. Our research shows spa-
tial adaption is effective for typing on an invisible keyboard
for 1- and 2-finger typing.

EXPERIMENT 3: EVALUATING INVISIBLE KEYBOARD
To understand the overall performance of the invisible key-
board and its learnability, we conducted a 3-day multi-session
user study. Because the previous study showed the spatial
adaption was effective, the decoders of the invisible keyboard
was adapted according to the data collected in the data col-
lection experiment (Table 2 in Appendix).
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Experiment Setup
Design. We adopted a between-subject design to eliminate
the potential carry-over effect between keyboard conditions.
The independent variable was the keyboard visibility with 2
levels: invisible and visible. We included the visible con-
dition as the baseline. In both conditions, participants per-
formed phrase transcription tasks in three consecutive days.
This multi-day study design allowed us to evaluate the learn-
ability of the keyboard. The test phrase set included 40
phrases randomly chosen from MacKenzie and Soukoreff’s
test set [31]. The same test set was used over 3 days and
keyboards, to ensure the validity of the measurement.

The phrase transcription task was the same with that in the
previous study evaluating the spatial adaption method. Fig-
ure 8 shows the screenshots of the keyboards in the study.
Each task on each day took approximately 20 - 25 minutes.

(a) Invisible keyboard (b) Visible keyboard
Figure 8. Screenshots of the two keyboards used in Experiment 3. (a):
invisible keyboard. (b): visible keyboard.

Participants and Apparatus. 20 subjects (6 female, 30%)
aged from 18 to 34 participated in the study: 10 for the invis-
ible and 10 for the visible condition. All participants had at
least one year experience of typing on touchscreen keyboard
on mobile devices. The median of self-reported familiarity
with the Qwerty keyboard (1: extremely unfamiliar; 10: ex-
tremely familiar) was 9. The apparatus was the same with
that in the previous study.

Results
Speed. Figure 9 shows the input speed by keyboard condition
and day. As shown, the input speeds of the invisible key-
boards increased from day 1 to day 3. ANOVA showed the
day had a significant main effect on the input speed (F2,18 =
8.862, p = 0.00209). Pairwise comparison with bonferroni
adjustment showed the difference was significant for day 1 vs.
day 2, day 1 vs. day 3 (p= 0.039, p= 0.030 respectively), but
not for day 2 vs. day 3 (p = 0.317). The input speeds of the
visible keyboard exhibited a similar trend over the three days,
however, ANOVA did not show a significant main effect of
the day on the input speed (F2,18 = 3.092, p = 0.0701). Pair-
wise comparison with bonferroni adjustment did not show
significant differences between any two days (p > 0.05). The

results confirmed that training had little effect on the perfor-
mance of the visible keyboard.

Day 1 Day 2 Day 3
0

10

20

30

40

W
P
M

31.3
35.7

37.9

38.6
40.4 41.6

Invisible Visible

Figure 9. Means (95% confidence interval) of input speed by keyboard
condition and day.

We also compared the input speeds of the invisible keyboard
on day 3, which approximated the expert-level performance,
with the baseline condition (i.e., visible keyboard). The
means of input speeds in WPM were 37.9 (SD = 6.85) for
the invisible keyboard on day 3, and 41.6 (SD = 6.10) for the
visible keyboard. ANOVA did not show a main effect of key-
board type on input speed (F1,18 = 1.587, p = 0.224). This
showed that after a 3-session training, the input speed of in-
visible keyboard (37.9) was very close to that of the visible
keyboard (41.6).

Word Error Rate. The mean error rates for each keyboard
condition on each day are shown in Table 1.

Day 1 Day 2 Day 3
Invisible 0.85 (1.08) 1.45 (1.31) 2.43 (2.26)
Visible 2.74 (1.31) 1.86 (1.71) 2.40 (2.35)

Table 1. The means (SD) of error rates (%) for the two keyboard condi-
tions on each day.

The mean error rates were all under 3% in both conditions
on each day. For the invisible keyboard, ANOVA showed the
day had a significant main effect on the error rate (F2,18 =
3.999, p = 0.0366). For the visible keyboard, ANOVA did
not exhibit a significant main effect of the day on the er-
ror rate (F2,18 = 0.924, p = 0.415). As for the expert-level
performance on the last day of the study, there was no sig-
nificant effect of keyboard visibility on the word error rate
(F1,18 = 0, p = 0.984).

Subjective Ratings. To understand users’ preferences of dif-
ferent design options, each participant rated the keyboard us-
ing a 5-level scale: 1 (Very dislike) - 5 (Very like) at the end
of the study session on each day. Figure 10 shows the me-
dian of the ratings over 3 days on each keyboard. As shown,
users’ subjective ratings increased from day 1 to day 3 for the
invisible keyboard.

Discussion
Our study shows that the invisible keyboard is a practical and
easy-to-learn design option for a virtual keyboard. The novice
input speed was above 30 WPM. After 20 - 25 minutes prac-
tice for three consecutive days, users were able to enter text
at 37.9 WPM, only 4 WPM slower than the speed of the reg-
ular visible keyboard. ANOVA did not show a significant dif-
ference for input speed on the last day (p = 0.0701). These
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Day 1 Day 2 Day 3
Very dislike

Dislike

OK

Like

Very like

Invisible Visible

Figure 10. Median ratings by keyboard condition and day.

promising results were remarkable. Although previous re-
search showed that users could type to a certain degree rely-
ing on finger motor memory [8, 29], our results showed users
could type with no visuals on keyboard reasonably well after
a short period of training. Note that our finding was obtained
based a sample of 20 participants who all had experience with
virtual keyboards. The sample size was relatively small and
future research is needed to investigate the performance of
users with little experience of typing on virtual keyboards.

The promising performance of the invisible keyboard can be
largely attributed to the correction ability of the decoder. 70%
(7 of 10) of the participants commented that the keyboard
was able to correct most of their errors and they relied on
it to enter text. To quantify the error correction ability, we
examined error reduction rate, which is the number of correct
auto-correction or suggestions divided by the total number
of incorrect literal strings. This metric was 94.2% for the
invisible keyboard.

Some users raised a question about interacting with the wid-
gets underneath the keyboard during text entry. As shown
in the previous research [17], multitasking is challenging on
mobile devices. One solution is to use finger identification
technique to assign input from different fingers to different
applications [17].

Overall, our investigation shows that the invisible keyboard is
viable, practical, and easy-to-learn. It saves precious screen
real estate, and introduces little performance degradation af-
ter 20 - 25 minute practice on each day in 3 days.

CONCLUSIONS
Invisible keyboard is a desirable design option. Our research
on invisible keyboard answered a set of questions through 3
experiments: Are users able type on an invisible keyboard? If
so, how will users type differently? What technology can be
applied to support it? What is its performance?

First, Experiment 1 showed it was possible to type on an in-
visible keyboard. Users had strong memory recall on key po-
sitions: they could correctly recall key positions relative to
the Qwerty layout even when keys were completely invisible
and with 1 or 2 finger typing. On the other hand, their touch
point distributions exhibited different patterns compared with
those on a visible keyboard.

Second, we examined whether adapting the spatial model of
the decoder would improve the performance of the invisible
keyboard. We derived the adapted spatial model for the invis-
ible keyboard from our study data, integrated it into a state-
of-the-art decoder with a language model, and systematically

evaluated it. Experiment 2 showed this method was very ef-
fective. It increased the typing speed of the invisible key-
board by 11.5% over the baseline invisible keyboard which
used the default spatial model (i.e., unadapted) and simply
hid the keys. We disclose the parameters of the derived spa-
tial model (in Appendix), which are available for use by other
researchers.

Third, Experiment 3 showed typing on the invisible keyboard
was easy-to-learn, practical and promising. It was remarkable
that the input speed of the invisible keyboard was approach-
ing the visible keyboard after 60 - 75 minutes practice in 3
days (20 - 25 minutes on each day). No significant difference
was observed between the speed of the invisible keyboard on
the last day (37.9 WPM) and the speed of a regular visible
keyboard (41.6 WPM). Typing on an invisible keyboard was
also easy to learn. The input speed of the invisible keyboard
increased from 31.3 WPM on day 1 to 37.9 WPM on day 3,
showing a rapid learning process.

Overall, our investigation shows that an invisible keyboard
with adapted spatial model is a practical and promising inter-
face option for the mobile text entry systems.

REFERENCES
1. Ahmed Sabbir Arif, Benedikt Iltisberger, and Wolfgang

Stuerzlinger. 2011. Extending Mobile User Ambient
Awareness for Nomadic Text Entry. In Proceedings of
the 23rd Australian Computer-Human Interaction
Conference (OzCHI ’11). ACM, New York, NY, USA,
21–30. DOI:http://dx.doi.org/10.1145/2071536.2071539

2. Shiri Azenkot and Shumin Zhai. 2012. Touch Behavior
with Different Postures on Soft Smartphone Keyboards.
In Proceedings of the 14th International Conference on
Human-computer Interaction with Mobile Devices and
Services (MobileHCI ’12). ACM, New York, NY, USA,
251–260. DOI:
http://dx.doi.org/10.1145/2371574.2371612

3. Xiaojun Bi, Shiri Azenkot, Kurt Partridge, and Shumin
Zhai. 2013a. Octopus: Evaluating Touchscreen
Keyboard Correction and Recognition Algorithms via
Remulation. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’13).
ACM, New York, NY, USA, 543–552. DOI:
http://dx.doi.org/10.1145/2470654.2470732

4. Xiaojun Bi, Yang Li, and Shumin Zhai. 2013b. FFitts
Law: Modeling Finger Touch with Fitts’ Law. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 1363–1372. DOI:
http://dx.doi.org/10.1145/2470654.2466180

5. Xiaojun Bi and Shumin Zhai. 2013. Bayesian Touch: A
Statistical Criterion of Target Selection with Finger
Touch. In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’13). ACM, New York, NY, USA, 51–60. DOI:
http://dx.doi.org/10.1145/2501988.2502058

6. James Clawson, Kent Lyons, Thad Starner, and Edward
Clarkson. 2005. The Impacts of Limited Visual

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 439 Page 10

http://dx.doi.org/10.1145/2071536.2071539
http://dx.doi.org/10.1145/2371574.2371612
http://dx.doi.org/10.1145/2470654.2470732
http://dx.doi.org/10.1145/2470654.2466180
http://dx.doi.org/10.1145/2501988.2502058


Feedback on Mobile Text Entry for the Twiddler and
Mini-QWERTY Keyboards. In Proceedings of the Ninth
IEEE International Symposium on Wearable Computers
(ISWC ’05). IEEE Computer Society, Washington, DC,
USA, 170–177. DOI:
http://dx.doi.org/10.1109/ISWC.2005.49

7. Leah Findlater and Jacob Wobbrock. 2012. Personalized
Input: Improving Ten-finger Touchscreen Typing
Through Automatic Adaptation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’12). ACM, New York, NY, USA,
815–824. DOI:
http://dx.doi.org/10.1145/2207676.2208520

8. Leah Findlater, Jacob O. Wobbrock, and Daniel Wigdor.
2011. Typing on Flat Glass: Examining Ten-finger
Expert Typing Patterns on Touch Surfaces. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’11). ACM, New
York, NY, USA, 2453–2462. DOI:
http://dx.doi.org/10.1145/1978942.1979301

9. Kenneth P. Fishkin, Thomas P. Moran, and Beverly L.
Harrison. 1999. Embodied User Interfaces: Towards
Invisible User Interfaces. In Proceedings of the IFIP
TC2/TC13 WG2.7/WG13.4 Seventh Working Conference
on Engineering for Human-Computer Interaction.
Kluwer, B.V., Deventer, The Netherlands, The
Netherlands, 1–18.
http://dl.acm.org/citation.cfm?id=645349.650706

10. Fleksy. 2016. Fleksy Keyboard - GIFs, Custom
Extensions, and Themes. http://fleksy.com/. (2016).
[Online; accessed 10-February-2017].

11. Andrew Fowler, Kurt Partridge, Ciprian Chelba,
Xiaojun Bi, Tom Ouyang, and Shumin Zhai. 2015.
Effects of Language Modeling and Its Personalization
on Touchscreen Typing Performance. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY,
USA, 649–658. DOI:
http://dx.doi.org/10.1145/2702123.2702503

12. Mayank Goel, Alex Jansen, Travis Mandel, Shwetak N.
Patel, and Jacob O. Wobbrock. 2013. ContextType:
Using Hand Posture Information to Improve Mobile
Touch Screen Text Entry. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’13). ACM, New York, NY, USA, 2795–2798.
DOI:http://dx.doi.org/10.1145/2470654.2481386

13. Joshua Goodman, Gina Venolia, Keith Steury, and
Chauncey Parker. 2002. Language Modeling for Soft
Keyboards. In Proceedings of the 7th International
Conference on Intelligent User Interfaces (IUI ’02).
ACM, New York, NY, USA, 194–195. DOI:
http://dx.doi.org/10.1145/502716.502753

14. Mitchell Gordon, Tom Ouyang, and Shumin Zhai. 2016.
WatchWriter: Tap and Gesture Typing on a Smartwatch
Miniature Keyboard with Statistical Decoding. In

Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 3817–3821. DOI:
http://dx.doi.org/10.1145/2858036.2858242

15. Nathan Green, Jan Kruger, Chirag Faldu, and Robert
St. Amant. 2004. A Reduced QWERTY Keyboard for
Mobile Text Entry. In CHI ’04 Extended Abstracts on
Human Factors in Computing Systems (CHI EA ’04).
ACM, New York, NY, USA, 1429–1432. DOI:
http://dx.doi.org/10.1145/985921.986082

16. Asela Gunawardana, Tim Paek, and Christopher Meek.
2010. Usability Guided Key-target Resizing for Soft
Keyboards. In Proceedings of the 15th International
Conference on Intelligent User Interfaces (IUI ’10).
ACM, New York, NY, USA, 111–118. DOI:
http://dx.doi.org/10.1145/1719970.1719986

17. Aakar Gupta, Muhammed Anwar, and Ravin
Balakrishnan. 2016. Porous Interfaces for Small Screen
Multitasking Using Finger Identification. In Proceedings
of the 29th Annual Symposium on User Interface
Software and Technology (UIST ’16). ACM, New York,
NY, USA, 145–156. DOI:
http://dx.doi.org/10.1145/2984511.2984557

18. Sean Gustafson, Daniel Bierwirth, and Patrick Baudisch.
2010. Imaginary Interfaces: Spatial Interaction with
Empty Hands and Without Visual Feedback. In
Proceedings of the 23Nd Annual ACM Symposium on
User Interface Software and Technology (UIST ’10).
ACM, New York, NY, USA, 3–12. DOI:
http://dx.doi.org/10.1145/1866029.1866033

19. Sean Gustafson, Christian Holz, and Patrick Baudisch.
2011. Imaginary Phone: Learning Imaginary Interfaces
by Transferring Spatial Memory from a Familiar Device.
In Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology (UIST ’11).
ACM, New York, NY, USA, 283–292. DOI:
http://dx.doi.org/10.1145/2047196.2047233

20. Sean G. Gustafson, Bernhard Rabe, and Patrick M.
Baudisch. 2013. Understanding Palm-based Imaginary
Interfaces: The Role of Visual and Tactile Cues when
Browsing. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’13). ACM,
New York, NY, USA, 889–898. DOI:
http://dx.doi.org/10.1145/2470654.2466114

21. Niels Henze, Enrico Rukzio, and Susanne Boll. 2012.
Observational and Experimental Investigation of Typing
Behaviour Using Virtual Keyboards for Mobile Devices.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12). ACM, New
York, NY, USA, 2659–2668. DOI:
http://dx.doi.org/10.1145/2207676.2208658

22. Yamada Hisao. 1980. A Historical Study of Typewriters
and Typing Methods: from the Position of Planning
Japanese Parallels. Journal of Information Processing 2,
4 (feb 1980), 175–202.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 439 Page 11

http://dx.doi.org/10.1109/ISWC.2005.49
http://dx.doi.org/10.1145/2207676.2208520
http://dx.doi.org/10.1145/1978942.1979301
http://dl.acm.org/citation.cfm?id=645349.650706
http://fleksy.com/
http://dx.doi.org/10.1145/2702123.2702503
http://dx.doi.org/10.1145/2470654.2481386
http://dx.doi.org/10.1145/502716.502753
http://dx.doi.org/10.1145/2858036.2858242
http://dx.doi.org/10.1145/985921.986082
http://dx.doi.org/10.1145/1719970.1719986
http://dx.doi.org/10.1145/2984511.2984557
http://dx.doi.org/10.1145/1866029.1866033
http://dx.doi.org/10.1145/2047196.2047233
http://dx.doi.org/10.1145/2470654.2466114
http://dx.doi.org/10.1145/2207676.2208658


23. Whirlscape Inc. 2015. Minuum Keyboard By
Whirlscape. http://minuum.com/. (2015). [Online;
accessed 10-February-2017].

24. Hwan Kim, Yea-kyung Row, and Geehyuk Lee. 2012.
Back Keyboard: A Physical Keyboard on Backside of
Mobile Phone Using Qwerty. In CHI ’12 Extended
Abstracts on Human Factors in Computing Systems
(CHI EA ’12). ACM, New York, NY, USA, 1583–1588.
DOI:http://dx.doi.org/10.1145/2212776.2223676

25. Per-Ola Kristensson and Shumin Zhai. 2005. Relaxing
Stylus Typing Precision by Geometric Pattern Matching.
In Proceedings of the 10th International Conference on
Intelligent User Interfaces (IUI ’05). ACM, New York,
NY, USA, 151–158. DOI:
http://dx.doi.org/10.1145/1040830.1040867

26. Frank Chun Yat Li, David Dearman, and Khai N.
Truong. 2009. Virtual Shelves: Interactions with
Orientation Aware Devices. In Proceedings of the 22Nd
Annual ACM Symposium on User Interface Software
and Technology (UIST ’09). ACM, New York, NY, USA,
125–128. DOI:
http://dx.doi.org/10.1145/1622176.1622200

27. Frank Chun Yat Li, Richard T. Guy, Koji Yatani, and
Khai N. Truong. 2011. The 1Line Keyboard: A
QWERTY Layout in a Single Line. In Proceedings of
the 24th Annual ACM Symposium on User Interface
Software and Technology (UIST ’11). ACM, New York,
NY, USA, 461–470. DOI:
http://dx.doi.org/10.1145/2047196.2047257

28. Pointesa LLC. 2012. ASETNIOP. http://asetniop.com/.
(2012). [Online; accessed 10-February-2017].

29. Yiqin Lu, Chun Yu, Xin Yi, Yuanchun Shi, and
Shengdong Zhao. 2017. BlindType: Eyes-Free Text
Entry on Handheld Touchpad by Leveraging Thumb’s
Muscle Memory. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 1, 2, Article 18 (June 2017), 24
pages. DOI:http://dx.doi.org/10.1145/3090083

30. I. Scott MacKenzie, Hedy Kober, Derek Smith, Terry
Jones, and Eugene Skepner. 2001. LetterWise:
Prefix-based Disambiguation for Mobile Text Input. In
Proceedings of the 14th Annual ACM Symposium on
User Interface Software and Technology (UIST ’01).
ACM, New York, NY, USA, 111–120. DOI:
http://dx.doi.org/10.1145/502348.502365

31. I. Scott MacKenzie and R. William Soukoreff. 2003.
Phrase Sets for Evaluating Text Entry Techniques. In
CHI ’03 Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’03). ACM, New York,
NY, USA, 754–755. DOI:
http://dx.doi.org/10.1145/765891.765971

32. Aske Mottelson, Christoffer Larsen, Mikkel Lyderik,
Paul Strohmeier, and Jarrod Knibbe. 2016. Invisiboard:
Maximizing Display and Input Space with a Full Screen
Text Entry Method for Smartwatches. In Proceedings of
the 18th International Conference on Human-Computer
Interaction with Mobile Devices and Services

(MobileHCI ’16). ACM, New York, NY, USA, 53–59.
DOI:http://dx.doi.org/10.1145/2935334.2935360

33. Philip Quinn and Shumin Zhai. 2016. A Cost-Benefit
Study of Text Entry Suggestion Interaction. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 83–88. DOI:
http://dx.doi.org/10.1145/2858036.2858305

34. Daniel R. Rashid and Noah A. Smith. 2008. Relative
Keyboard Input System. In Proceedings of the 13th
International Conference on Intelligent User Interfaces
(IUI ’08). ACM, New York, NY, USA, 397–400. DOI:
http://dx.doi.org/10.1145/1378773.1378839

35. Mathieu Raynal. 2014. KeyGlasses: Semi-transparent
Keys on Soft Keyboard. In Proceedings of the 16th
International ACM SIGACCESS Conference on
Computers & Accessibility (ASSETS ’14). ACM, New
York, NY, USA, 347–349. DOI:
http://dx.doi.org/10.1145/2661334.2661427

36. James Scott, Shahram Izadi, Leila Sadat Rezai,
Dominika Ruszkowski, Xiaojun Bi, and Ravin
Balakrishnan. 2010. RearType: Text Entry Using Keys
on the Back of a Device. In Proceedings of the 12th
International Conference on Human Computer
Interaction with Mobile Devices and Services
(MobileHCI ’10). ACM, New York, NY, USA, 171–180.
DOI:http://dx.doi.org/10.1145/1851600.1851630

37. Keith Vertanen, Haythem Memmi, Justin Emge, Shyam
Reyal, and Per Ola Kristensson. 2015. VelociTap:
Investigating Fast Mobile Text Entry Using
Sentence-Based Decoding of Touchscreen Keyboard
Input. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’15). ACM, New York, NY, USA, 659–668. DOI:
http://dx.doi.org/10.1145/2702123.2702135

38. Daryl Weir, Henning Pohl, Simon Rogers, Keith
Vertanen, and Per Ola Kristensson. 2014. Uncertain Text
Entry on Mobile Devices. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’14). ACM, New York, NY, USA, 2307–2316.
DOI:http://dx.doi.org/10.1145/2556288.2557412

39. Daniel Wigdor, Clifton Forlines, Patrick Baudisch, John
Barnwell, and Chia Shen. 2007. Lucid Touch: A
See-through Mobile Device. In Proceedings of the 20th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’07). ACM, New York, NY, USA,
269–278. DOI:
http://dx.doi.org/10.1145/1294211.1294259

40. Ying Yin, Tom Yu Ouyang, Kurt Partridge, and Shumin
Zhai. 2013. Making Touchscreen Keyboards Adaptive to
Keys, Hand Postures, and Individuals: A Hierarchical
Spatial Backoff Model Approach. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). ACM, New York, NY, USA,
2775–2784. DOI:
http://dx.doi.org/10.1145/2470654.2481384

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 439 Page 12

http://minuum.com/
http://dx.doi.org/10.1145/2212776.2223676
http://dx.doi.org/10.1145/1040830.1040867
http://dx.doi.org/10.1145/1622176.1622200
http://dx.doi.org/10.1145/2047196.2047257
http://asetniop.com/
http://dx.doi.org/10.1145/3090083
http://dx.doi.org/10.1145/502348.502365
http://dx.doi.org/10.1145/765891.765971
http://dx.doi.org/10.1145/2935334.2935360
http://dx.doi.org/10.1145/2858036.2858305
http://dx.doi.org/10.1145/1378773.1378839
http://dx.doi.org/10.1145/2661334.2661427
http://dx.doi.org/10.1145/1851600.1851630
http://dx.doi.org/10.1145/2702123.2702135
http://dx.doi.org/10.1145/2556288.2557412
http://dx.doi.org/10.1145/1294211.1294259
http://dx.doi.org/10.1145/2470654.2481384


APPENDIX

SPATIAL MODEL

Key Visible condition Partially-Invisible condition Invisible condition
µx σx µy σy ρ µx σx µy σy ρ µx σx µy σy ρ

a -24.37 33.49 21.33 27.21 0.16 -25.45 40.73 22.04 30.91 0.17 -31.93 40.41 -103.32 65.54 0.05
b -12.40 29.43 19.89 29.86 0.40 -65.84 68.78 27.79 36.46 0.17 -101.43 69.12 -31.05 55.39 -0.24
c -6.43 27.40 19.46 28.17 0.11 -26.69 53.30 29.91 30.94 0.08 -38.52 60.31 -36.09 53.46 -0.11
d -6.15 29.06 18.78 27.71 0.05 -11.35 54.35 20.87 33.77 -0.04 -19.49 63.11 -104.38 58.96 -0.05
e -15.23 29.44 22.87 22.20 0.04 -17.22 45.81 14.58 29.28 0.03 -25.00 51.90 -144.36 74.77 0.07
f -10.28 22.60 17.65 21.77 0.01 -20.10 49.21 27.42 28.04 -0.10 -23.13 55.73 -88.86 62.77 0.07
g -12.77 27.07 23.93 26.24 -0.36 -33.33 62.53 27.68 35.32 -0.24 -52.89 65.56 -97.07 66.30 -0.24
h -10.62 29.56 22.34 29.41 0.11 -29.83 53.10 28.19 33.56 0.09 -58.59 56.80 -92.90 69.04 -0.13
i -10.71 29.56 22.08 23.84 0.30 -25.08 57.27 16.70 32.63 0.18 -64.91 52.58 -134.94 88.97 0.19
j -5.58 25.17 16.72 20.44 0.15 -43.82 75.05 24.57 29.02 0.06 -85.67 69.80 -77.53 61.28 -0.07
k -12.95 29.13 23.40 23.55 0.30 -45.87 60.24 25.41 25.38 0.22 -109.52 66.60 -90.45 70.39 0.03
l -14.01 27.49 23.95 24.33 0.22 -39.35 60.34 23.73 24.03 0.30 -75.96 59.82 -84.89 67.52 0.08
m -13.62 29.96 16.36 26.62 0.24 -51.59 59.45 22.32 33.03 0.22 -82.43 44.72 -33.14 49.81 0.03
n -13.86 27.32 23.84 24.93 0.13 -51.71 46.64 30.08 32.36 0.13 -92.07 52.66 -39.21 55.30 -0.03
o -14.69 26.65 29.43 24.52 0.26 -38.33 56.56 17.60 29.54 0.30 -80.50 53.52 -127.38 89.54 0.13
p -14.88 29.16 31.42 23.23 0.38 -27.57 52.11 21.99 37.36 0.37 -64.80 45.15 -117.89 82.50 0.11
q 4.07 48.88 20.80 20.41 0.14 6.02 50.48 22.94 30.46 -0.12 40.53 67.49 -142.73 65.53 -0.10
r -9.43 31.60 24.31 21.60 -0.12 -10.08 51.96 21.73 28.87 -0.04 -14.54 64.43 -138.39 78.09 -0.01
s -14.50 30.90 21.25 24.03 0.22 -13.33 44.91 22.87 30.91 -0.01 -12.12 51.24 -98.14 64.83 0.00
t -6.14 26.93 24.06 22.60 -0.09 -7.09 47.48 20.80 26.67 -0.06 -33.73 60.84 -142.53 77.36 -0.08
u -9.24 26.96 24.18 23.36 0.03 -21.26 59.01 21.06 31.61 0.08 -66.68 54.84 -138.59 95.92 -0.10
v -10.50 24.90 14.28 24.16 -0.03 -39.82 59.93 25.15 27.88 -0.05 -42.60 61.81 -40.38 53.03 0.03
w -6.69 22.70 27.33 20.57 -0.03 -2.78 44.87 17.70 25.75 0.00 -4.36 45.11 -131.41 70.28 0.07
x 2.38 17.96 -10.26 19.59 -0.19 21.29 34.51 7.75 23.78 0.37 -35.97 38.26 -83.76 39.11 -0.12
y -8.77 30.38 27.67 26.89 -0.03 -18.04 60.11 22.35 30.20 0.09 -48.40 71.18 -139.17 84.06 -0.11
z -15.44 28.87 14.97 21.90 0.17 -19.61 37.86 24.50 31.09 0.17 -4.42 79.42 -47.98 48.01 0.30

Table 2. Touch point distribution parameters (in pixels) per key in visible, partially-invisible and invisible conditions. µx and µy are the optimized key
center coordinates, in relation to the geometric center of each key; σx and σy are standard deviations; ρ is the correlation.
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